Metabolism and Pharmacology of Ethanol

Prof. David W. Craig
Dept. of Chemistry
Hobart and William Smith Colleges
Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration, coma, death

* BACs for inexperienced user
What Factors Determine a Person’s Blood Alcohol Concentration (BAC in g/dL)?

- Number of Drinks Consumed
- Body Size and Build
- Sex
- Time
- Past Drinking Experiences
- Is Stomach Empty or Full?
Alcohol \(\text{CH}_3-\text{CH}_2-\text{OH} \)

Dose – Number of drinks consumed
- 12 oz Beer 3.6-4.0% alcohol contains 13-17g alcohol
- 4 oz Wine 12-14% alcohol contains 14-17g alcohol
- 1-1.5 oz 86 proof Whiskey contains 13-19g alcohol

Body size, build, and sex determines the volume accessible to ethanol

Chemical Solubility
- Completely soluble in water
- Somewhat soluble in fat
- 30x more soluble in water than in fat

• Proportion water in the body: Men .58, Women .49
Time – How rapidly can ethanol be absorbed?

Rate of absorption is dependent on:
- concentration gradient between gut and blood
- surface area of contact
- degree of vascularization

Effect of Food on Absorption
- food dilutes alcohol in the digestive system
- fatty foods are slow to digest and slow to move from the stomach to the small intestine
Time – How rapidly can ethanol removed?

- Ethanol clearance is zero order … the rate of clearance is independent of the ethanol concentration

- Average ethanol clearance rates
 - For moderate drinkers - .017 g/dL/hr
 - Drinkers consuming >60 drinks/month - .020 g/dL/hr
 - 80% of adult population > .012 g/dL/hr
Estimation of BAC

Calculation of BAC for inexperied drinkers -- The American Happy Hour Experience

<table>
<thead>
<tr>
<th>Drinks</th>
<th>Time (hr)</th>
<th>BAC</th>
<th>BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.0222</td>
<td>0.0337</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.0444</td>
<td>0.0675</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>0.0666</td>
<td>0.1012</td>
</tr>
</tbody>
</table>

In experiment, subjects drink 1.5oz shots of 80proof scotch on 15min intervals, measuring BAC 15min after each dose of alcohol.

\[
\text{peakBAC}(g/\text{dL}) = \frac{\text{Drinks} \times 13g/\text{drink} \times 806 \times 100(\text{mL/dL})}{\text{BodyWeight(kg)} \times \text{FractionWater(mL/g)} \times 1000g/kg} = \frac{\text{MR(g/dL/hr)} \times T(hr)}{}
\]

Ref: National Highway Traffic Safety Administration

What if we were to continue for five drinks?

-BAC Time Course-

- Male BAC
- Female BAC
- Drinks

-Time (hr)

-BAC (g/dL)-

-0.0000
-0.0200
-0.0400
-0.0600
-0.0800
-0.1000
-0.1200
-0.1400
-0.1600
-0.1800

-0.25 0.75 1.25 3 5 7 9 11 13 15

-No. Drinks-

-0 1 2 3 4 5 6
Effect of Rate of Ingestion of 10 Drinks on BAC (following a light meal)

<table>
<thead>
<tr>
<th>Rate of Ingestion</th>
<th>Absorption</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 drinks/hr</td>
<td>0.12</td>
<td>0</td>
</tr>
<tr>
<td>2 drinks/hr</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>1 drink/hr</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Graph showing the absorption and elimination of BAC over time for different rates of ingestion.
Data collected from 1,837 randomly selected students returning to residence halls late at night between 11pm and 3am during Spring ’03 through Fall ’06. BAC measurements were collected every night of the week (65% of sample from school nights, 35% from weekend nights). Men are 54% of the sample and women are 46% of the sample.
Data collected from 1,837 randomly selected students returning to residence halls late at night between 11pm and 3am during Spring ’03 through Fall ’06. BAC measurements were collected every night of the week (65% of sample from school nights, 35% from weekend nights). Men are 54% of the sample and women are 46% of the sample.
Data collected from 1,837 randomly selected students returning to residence halls late at night between 11pm and 3am during Spring ’03 through Fall ’06. BAC measurements were collected every night of the week (65% of sample from school nights, 35% from weekend nights). Men are 54% of the sample and women are 46% of the sample.
Major Pathway for Alcohol Metabolism

Ethanol \rightarrow NAD \rightarrow NADH

Acetaldehyde

NAD \rightarrow NADH

Biosynthesis \rightarrow Acetic Acid \rightarrow CO$_2$ + H$_2$O

Release to Blood
Metabolic Differences Between Men and Women

- Women are smaller than men
- Women have lower total body water content (49%) than men (58%) of comparable size
- Gastric ADH lower in women
 - virtually nonexistent in alcoholic women
 - declines in men over 50
- Fluctuations in gonadal hormone levels during the menstrual cycle may affect the rate of alcohol metabolism

SOURCE: Alcohol Alert #10, NIAAA (1990)
Metabolic Differences Between Ethnic Groups

- Isoenzymes in Alcohol DH (ADH)
 - Beta1 in Caucasian has Km 0.00023 g/dL
 - Beta2 in Asian has Km 0.0043 g/dL
 - Beta3 in 15% African Amer. has Km 0.165 g/dL

- 50% Chinese and Japanese Asians have inactive mito. Aldehyde DH (ALDH) resulting in facial flushing, palpitations, dizziness, and nausea
Effect of Chronic Use

- Metabolic Tolerance

But….This is not the whole story….more to come
Alcohol on the Brain
Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration, coma, death

*BACs for inexperienced user
The Brain’s Division of Labor

- **Voluntary muscle movement, motor area** for speech, emotional behavior, complex intellectual abilities
- **Receives sensory impulses (pain, hot, cold), and awareness of body parts**
- **Coordinate body movement, balance**
- **Hearing, taste, smell**
- **Metabolism, temperature, activity level, appetite, sexual desire, reproductive cycles**
Reward/Pleasure Center

Reward System of the Brain

Prefrontal cortex

Nucleus accumbens

Lateral hypothalamus

Amygdala

Hippocampus

Substantia nigra

Ventral tegmental area
Neurons
Synapse

Message Arrives

Nerve impulse

Presynaptic neuron

Vesicle with neurotransmitters

Reuptake port

Synaptic gap

Receptor site

Postsynaptic neuron

Message Transmitted

Receptor site

Postsynaptic neuron
How the Synapse Functions
Regulatory Synapses and Psychoactive Drugs

Cocaine Forces Neurotransmitter Release

Heroin Inhibits Substance “P” Pain Message

Secondary terminal containing endorphins

Heroin

Cocaine

Blocks reuptake port
Alcohol Affects Neurotransmitter Function in the Brain

- Potentiates GABA receptor function
- Inhibits Glutamate receptor function
- Increases Dopamine concentration
- Increases Seratonin release
- Stimulates Opiate Neuropeptide Release
Affect on Dopamine, Serotonin, and Endogenous Opiates (BAC ~ .01--.05 g/dL)

- Dopamine stimulates pleasure centers and functions in positive reinforcement
 - alcohol increases Dopamine concentrations in nucleus acumbens and other reward centers

- Serotonin functions in mood, sleep and positive reinforcement
 - alcoholics and thrill seekers have low serotonin levels and alcohol consumption (and thrill activities) brings theses levels up to normal.
 - Serotonergic drugs have reduced alcohol consumption by alcoholics.

- Endorphins and Enkephalins are natural neural peptides that bind to opiate receptors and produce euphoric effects.
 - Endorphins and Enkephalins are released by the brain when exposed to alcohol
 - Euphoria seems to stimulate further drinking
Affect on GABA function (BAC >= 0.06 g/dL)

- GABA is major inhibitory neurotransmitter controlling “arousal state” and sensory and motor activity
- Alcohol Potentiates GABA receptor function
- GABA receptor is site of action of
 - sedative/anesthetic barbiturate, pentobarbitol
 - sedative/anxiolytic benzodiazepines
- RO 15-4513 overcomes motor impairment
Affect on Glutamate Function (BAC ~.02--.2 g/dL)

- Glutamate is a major excitatory neurotransmitter.
- Alcohol inhibits NMDA glutamate receptor function.
- Impaired NMDA Glutamate Receptor Function Causes:
 - cognitive impairment and amnesia
 - inability to learn new information
- Alcohol parallels action of PCP or “angel dust”
Effect of Chronic Use

- **Tolerance**
 - changes in number and types of GABA receptors
 - Increase in number of glutamate receptors

- **Withdrawal**
 - increased Anxiety within hours -- GABA
 - seizures -- Glutamate

- **Dependence**
 - changes in Dopamine and Serotonin function appear to be long lasting
What Causes a Hangover?

- **Pounding Headache**
 - Caused by reduced blood pressure in cranial vessels

- **General Lethargy**
 - Caused by buildup of lactic acid and acidosis by release of acetic acid

- **Hypersensitivity to Light and Sound**
 - Alcohol withdrawal leads to increased excitability, depressed mood, and sensitivity to stimuli

- **Queasy Stomach**
 - Empty stomach, overly acidic
 - Also due to withdrawal

- **What about taking a drink to relieve hangover symptoms?**
Alcohol and Sex

- **Physiological responses**
 - Erections slower to rise and quicker to fall
 - Reduction in vaginal lubrication

- **Psychological Perceptions**
 - 45% of men and 68% of women say alcohol enhances sexual enjoyment

- **Rutgers study (2-3 standard drinks)**
 - Subjects who thought they drank alcohol were most highly aroused (those that did not actually get alcohol were slightly less aroused)
 - Subjects who expected tonic but actually got alcohol were less aroused than those that expected alcohol but did not.
Important Metabolic Interactions and Health Concerns
Major Pathway for Alcohol Metabolism

Ethanol

NAD \rightarrow NADH

Acetaldehyde

Acetaldehyde DH

NAD \rightarrow NADH

Biosynthesis \rightarrow Acetic Acid \rightarrow CO$_2$ + H$_2$O

Release to Blood
Interaction with other Drugs

- Ethyl ester of Cocaine
 - potentiates cocaine “high”
- Aspirin and Cimetidine Inhibits Gastric ADH
- Liver Drug Detoxification Impaired
 - Depleted NAD impairs livers ability to clear other drugs
Metabolic Fates of Excess Ethanol and Acetaldehyde

- Ethyl esters of Fatty Acids and Cholesterol
 - may cause heart damage, impair energy metabolism, disrupt cell membranes
- Protein Modification by Acetaldehyde
 - enzymes inactivated by imine adducts
- Ethanol can also be oxidized by MEOS/Cytochrome P450
 - MEOS oxidation produces harmful free radicals
Other Metabolic Processes Affected by Alcohol Metabolism

- High NADH/NAD ratio:
 - Impaired Energy Metabolism and increased production of lactic acid
 - Inhibits Lipid Degredation in Liver
 - Stimulation of fat synthesis and increases in LDL and HDL levels
 - Inhibition of oxidative steps in testosterone synthesis
Other Metabolic Processes Affected by Alcohol Metabolism

- Acetaldehyde Adducts
 - tubulin-mediated protein exocytosis and endocytosis inhibited....insulin, etc
 - Impaired Protein Synthesis Type II Muscle Fibers depleted
 - In alcoholics, acetaldehyde reacts with dopamine to become tetrahydroisoquinoline (THIQ) in the brain. It is thought that accumulation of THIQ is related to addiction.
Alcohol-Induced Liver Damage

- Risk becomes significant when alcohol consumption exceeds
 - 6.2oz/day for men
 - 1.55oz/day for women

- Caused by
 - Free radical rx in fatty liver
 - Cytokine stimulated differentiation of Ito cells into collagen myofibroblasts
 - Increased levels of Acetaldehyde due to lower levels of Aldehyde dehydrogenase
Alcohol-Induced Immune System Impairment

- Suppresses proliferation of lymphocytes in blood, spleen, and thymus
- Reduced B cell antibody production
- Natural Killer (NK) cells have reduced activity
Alcohol-Induced Changes in the Cardiovascular System

- Reduced risk of CAD with ≤ 2 drinks/day
 - increased HDL, inhibition of platelet activity
- Reduction in Cerebral Vascular Disease (Stroke)
 - reduced platelet activity
- 50% greater risk of hypertension with 3-4 drinks/day
- Cardiomyopathy (weakened heart muscle)
 - impaired protein metabolism, free radicals
- Arrhythmias caused by alcohol effect on sinoatrial node